TY - JOUR AB - Recent studies have established that vitamin D plays multiple biological roles beyond calcium metabolism; however, whether vitamin D is involved in energy metabolism is unknown. To address this question, we characterized the metabolic phenotypes of vitamin D receptor (VDR)-null mutant mice. Under a normocalcemic condition, VDR-null mice displayed less body fat mass and lower plasma triglyceride and cholesterol levels compared with wild-type (WT) mice; when placed on a high-fat diet, VDR-null mice showed a slower growth rate and accumulated less fat mass globally than WT mice, even though their food intake and intestinal lipid transport capacity were the same as WT mice. Consistent with the lower adipose mass, plasma leptin levels were lower and white adipocytes were histologically smaller in VDR-null mice than WT mice. The rate of fatty acid beta-oxidation in the white adipose tissue was higher, and the expression of uncoupling protein (UCP) 1, UCP2 and UCP3 was markedly upregulated in VDR-null mice, suggesting a higher energy expenditure in the mutant mice. Experiments using primary brown fat culture confirmed that 1,25-dihydroxyvitamin D3 directly suppressed the expression of the UCPs. Consistently, the energy expenditure, oxygen consumption, and CO2 production in VDR-null mice were markedly higher than in WT mice. These data indicate that vitamin D is involved in energy metabolism and adipocyte biology in vivo in part through regulation of beta-oxidation and UCP expression. AD - Department of Medicine, Committee on Molecular Metabolism and Nutrition, The University of Chicago, MC 4076, 5841 S. Maryland Ave., Chicago, IL 60637, USA. AN - 19176352 AU - Wong, K. E. AU - Szeto, F. L. AU - Zhang, W. AU - Ye, H. AU - Kong, J. AU - Zhang, Z. AU - Sun, X. J. AU - Li, Y. C. C2 - 2670625 DA - Apr DO - 10.1152/ajpendo.90763.2008 ET - 2009/01/30 J2 - American journal of physiology. Endocrinology and metabolism KW - Adipocytes/metabolism/physiology Animals Cells, Cultured Energy Metabolism/drug effects/*genetics Female Gene Expression Regulation/drug effects/physiology Ion Channels/*genetics/metabolism Lipid Metabolism/drug effects/genetics Male Mice Mice, Inbred C57BL Mice, Knockout Mitochondrial Proteins/*genetics/metabolism Oxidation-Reduction/drug effects Oxygen Consumption/genetics Receptors, Calcitriol/genetics/metabolism/*physiology Vitamin D/pharmacology LA - eng M1 - 4 M3 - Research Support, N.I.H., Extramural N1 - Wong, Kari E Szeto, Frances L Zhang, Wenshuo Ye, Honggang Kong, Juan Zhang, Zhongyi Sun, Xiao Jian Li, Yan Chun DK-20595/DK/NIDDK NIH HHS/ R01 085793/PHS HHS/ T32 DK-07074/DK/NIDDK NIH HHS/ Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E820-8. Epub 2009 Jan 27. PY - 2009 SN - 0193-1849 (Print) 0193-1849 (Linking) SP - E820-8 ST - Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins T2 - Am J Physiol Endocrinol Metab TI - Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins UR - http://www.ncbi.nlm.nih.gov/pubmed/19176352 VL - 296 ID - 136 ER -